A Hybrid Wind Power Forecasting Model with XGBoost, Data Preprocessing Considering Different NWPs

نویسندگان

چکیده

In recent years, wind energy has become a competitively priced source of around the world, which created increasing challenges for system operators. Accurate power generation forecasting plays an important role in systems to improve reliable and efficient operation. Therefore, numerous artificial intelligent methods such as machine learning deep have been considered solutions accurate forecasts. addition deterministic forecasting, probabilistic becomes more important, because it indicates level uncertainty. this paper, hybrid model considering different Numerical Weather Prediction (NWP) models XGBoost training is proposed short-term forecasting. The algorithm includes data preprocessing, autoencoder used reduce dimension 20 NWP ensembles. performance method investigated using historical measurements results by Taiwan Central Bureau (CWB); spot speeds from WRFD, RWRF, ensemble WEPS. Based on results, produces better accuracy among other models, reveals importance preprocessing autoencoders use or

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A hybrid model based on data preprocessing for electrical power forecasting

Electrical power forecasting plays a vital role in power system administration and planning. Inaccurate forecasting can lead to the waste of scarce energy resources, electricity shortages, and even power grid collapses. On the other hand, accurate electricity power forecasting can enable reliable guidance for the planning of power production and the operation of a power system, which is also im...

متن کامل

A new approach to wind turbine power generation forecasting, using weather radar data based on Hidden Markov Model

The wind is one of the most important and affecting phenomena and is known as one of the significant clean resources of energy. Apart from other atmospheric parameters, the wind has complex behavior and intermittent characteristics. Local phenomena can be accompanied by the wind, which is strong, non-predicted, and damaging.  Weather radars are capable of detecting and displaying storm-related ...

متن کامل

A hybrid WFA approach for Short-Term Wind Power Forecasting

Wind generation is hectic by nature, making wind power forecasting highly challenging, particularly for short time frames. Forecasting of wind power is becoming progressively more important to power system operators and electricity market.Wind power is variable and irregular over various timescales as it is weather dependent. Thus precise forecasting of wind power is acknowledged as a major con...

متن کامل

A Low-Carbon Dispatch Model in a Wind Power Integrated System Considering Wind Speed Forecasting and Energy-Environmental Efficiency

This paper introduces the “Energy-Environmental Efficiency” concept of building a low-carbon dispatch model of wind-incorporated power systems from the perspective of environmental protection and low-carbon dispatch promotion based on the existing economic environmental dispatch. A rolling auto-regressive and moving-average model is adopted to forecast wind speeds for the next 24 h and reduce t...

متن کامل

Short and Mid-Term Wind Power Plants Forecasting With ANN

In recent years, wind energy has a remarkable growth in the world, but one of the important problems of power generated from wind is its uncertainty and corresponding power. For solving this problem, some approaches have been presented. Recently, the Artificial Neural Networks (ANN) as a heuristic method has more applications for this propose. In this paper, short-term (1 hour) and mid-term (24...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied sciences

سال: 2021

ISSN: ['2076-3417']

DOI: https://doi.org/10.3390/app11031100